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This paper addresses TOR 2.1 Trends in Stock Productivity:

a.) For relevant stocks, identify trends in biological parameters (i.e., life history and/or
recruitment) and assess their importance for the computation of BRPs and for
specification of rebuilding scenarios;

b.) If possible, summarize trends in pertinent environmental variables that might be
related to the trends in those biological parameters relevant to BRPs.

Introduction

During the 2005 GARM |1 assessment meeting (Mayo and Terceiro 2005), declining
trends in commercial mean weights at age were observed in recent years for some
groundfish stocks. If trends in growth are significant and persistent there would be
potential ramifications for stock assessments that involve stock projections or calculation
of biological reference points (BRP). This was the impetus to form a GARM working
group to examine trends in length, weight, and maturity of the managed groundfish
stocks.

The working group has three major objectives: 1) derive time series of population mean
length, weight, and maturity at age for groundfish stocks using research survey data 2)
perform statistical analyses to detect increasing or decreasing trends; and 3) explore
potential mechanisms that may be influencing trends. Potential mechanisms effecting
growth and maturity include, but are not limited to, maternal and paternal effects, stock
density, environment, i.e. temperature and oceanographic conditions, prey abundance,
and fishery induced selective mortality. In our future work, we will explore mechanisms
related to density dependence, environment, and prey abundance only.

We have addressed the first objective and present here a compilation of trends in growth
and maturity at age for twenty groundfish stocks, including most of the GARM stocks
and several other selected groundfish stocks. We have initiated some statistical tests for
detecting trends and will continue those analyzes further in conjunction with exploring
potential mechanisms for trends in growth.

Methods

Length, weight, and maturity data, as well as age structures for twenty groundfish stocks
collected on NEFSC winter (1992-2006), spring (1963-2005) and autumn (1963-2005)
research bottom trawl surveys, using standard groundfish procedures (Azarovitz 1981),
were analyzed in this study. The twenty stocks analyzed included: Georges Bank (GB)
cod, GB haddock, GB yellowtail flounder, Southern New England yellowtail flounder
(SNE) Gulf of Maine-Cape cod yellowtail founder, (GM-CC), Gulf of Maine (GM) cod,
witch flounder, American plaice, GM winter flounder, SNE-Middle Atlantic (MA) winter
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flounder, GB winter flounder, white hake, Pollock, redfish, as well as 5 other stocks
stocks: butterfish, fluke (summer flounder), herring, mackerel, and northern GB silver
hake (Table 6.1). Time series varied in length between the stocks based on the available
age data. The longest time series was from 1963-2005 (GB haddock) and the shortest was
from 1982-2007 (witch flounder).

Stratified mean length at age, mean weight at age, and mean age compositions (number
per tow at age), were estimated for each stock using standard NEFSC survey analysis
software (SURVAN). Stratified mean length and weight at age for the flatfish stocks
were estimated separately for females and males because flatfish exhibit dimorphic
growth by sex. Mean weights at age for each stock prior to 1992 were estimated using the
stock-specific length-weight equation applied in each of the assessments. Means weight
at age since 1992 were of particular interest because individual fish weights have been
recorded on NEFSC research bottom trawl surveys since that time. The length-weight
model: In (W) =a+ b In(L), where W is body weight (kg), L is total length (cm) and a
and b are parameters, was fit to these data to derive mean weights at age annually for
each stock and survey. Mean lengths and weights at age were re-scaled as Z-scores
[(observed — mean)/ standard deviation] for easier visual comparison of trends among
ages. A loess smoother with a tension of 0.5 was also fit to the stratified mean length and
mean weight at age for each stock.

Logistic regression analysis was used to estimate female maturity ogives from NEFSC
research survey data for the season nearest the time of spawning. The number of samples
taken each year, by sex, over the time series is not consistently high for most stocks and
does not allow for reliable annual estimates, so the data was smoothed using either a 3- or
5-year moving average. For example, the 1990 ogive was estimated by combining data
from 1989-1991 and estimating one ogive, and then the 1991 ogive was estimated by
combining data from 1990-1992 and so forth, for the time series. This means that the first
year e.g., 1970, only as two years of data (1970, 1971) and the last year, 2007, also has
only 2 years of data (2006 and 2007). Confidence limits for proportion mature at age
were estimated at the 95% level using the approximate variance for large samples
(Ashton 1972, O’Brien et al. 1993) and inverse 95% confidence limits for Asy (median
age at maturity) were estimated within the SAS PROBIT procedure (SAS). The maturity
ogives presented here are not necessarily used in the assessment.

To detect trends and patterns among ages and years the data were ranked by quintiles
based on rank value by age group across years for each time series of mean length, mean
weight, abundance, and proportion mature at age. The Visual Report (VR) software
package (available in the NEFSC Stock Assessment Toolbox) was used to generate the
quintile plots. Plotting symbols depend on quintiles of rank, i.e. annual values that fall
into the lowest quintile (0-20%) are plotted in black and annual values in the highest
quintile (80-100%) are plotted in red (Figure 2.1.1)

Linear regression was used to test the null hypothesis of no linear trend in mean length
and weight at age for selected stocks. Statistical significance of estimated trends was also
evaluated using randomization tests (Manley 1997) and simple standard regression



statistics. Results were “statistically significant” in this analysis if the probability of Type
I error for a two-sided test under the null hypothesis of no trend was P < 0.1. The critical
value P = 0.1, was used (rather than P = 0.05, for example) because of noise in the survey
data and concern about failing to detect trends.

For the randomization tests, Z-scores of mean length and weight for each age group,
stock, and survey were reordered randomly and then regressed on year. Approximate
two-sided probability P-values were computed as the proportion of randomized values
that were as extreme, or more extreme than the observed test statistic (observed slope). A
total of 1,000 randomizations were used to compute each P-value.

In addition to testing the significance of individual slopes, we used an “exact” binomial
test for the null hypothesis of no trends and no correlation in trends among age groups for
a single stock and survey. The exact test is a standard statistical approach based on the
probability of seeing the observed or a larger number of positive or negative slopes from
a set of linear regressions under the null hypothesis. Under the null hypothesis of no
trends and no correlation, positive and negative slopes are equally likely. A significant
exact test indicates that different age groups for a single stock and survey share the same
trends. For example, if there were eight age groups for a stock with six positive trends in
mean length and two negative trends in mean length , then the exact test would be not
significant with P = 0.29. In this example, the P-value is the probability of getting 6, 7
or eight positive or negative trends under the null hypothesis. In contrast, if there were
five age groups and all had positive slopes, then P =0.0625 (significant). The binomial
test is most useful with at least five size groups, because a significant p-value (P < =0.1)
can occur only with five or more size groups.

Environmental Data Series

We present time series of several global and regional environmental times series that may
potentially influence change in growth parameters of groundfish, either directly or
indirectly. Global variables include times series of anomalies in the Northwest Atlantic
Oscillation (NAO) (Jones et al. 1997, Hurrell 1995, http://www.cru.uea.ac.uk/cru) and
the position of the north wall of the Gulf Stream (http://web.pml.ac.uk/gulfstream).
Regional sea surface temperature time series for the Northeast Continental Shelf, derived
from the extended reconstruction sea surface temperature (ERSST) dataset of monthly
mean values computed from the International Comprehensive Ocean Atmosphere Data
Set (ICOADS) were provided by Friedland and Hare (2007). Chorophyll a (mg/m?®) time
series (1997-2007) and primary productivity (mgC/m?/day) time series (1998-2006),
obtained from SeaWifs were provided by Friedland (pers.comm.)

Additional Data Series

Abundance of copepods and other common zooplankton taxa on Georges Bank during
1977-2004) (Kane 2007) and food habits data time series for several stocks (Jason Link,
pers . comm.) were derived from NEFSC data collected on spring and autumn research
bottom trawl surveys.

Results



Qualitative results

All of the figures of Z-scores and loess smooths , plots of proportion mature at age
maturity, and VR plots are presented in the WP 2.1 Part 1l for all 20 stocks.

A qualitative review of the Z-score plots shows that mean length and mean weight
generally trend in the same direction indicating that condition as not changed for any of
these species over the time series (Partll. Fig. 2.1A1-Y1).

Six stocks show no particular trend in either mean length or mean weight in the more
recent years:

Yellowtail flounder in GM-CC (Partll. Fig. 2.1.E1 and SNE (Partll. Fig. 2.1.D1),
winter flounder in GM (Partll. Fig. 2.1.11) and SNE (Partll. Fig. 2.1.J1), fluke (Partll.
Fig. 2.1.V1 and mackerel (Partll. Fig. 2.1.X1).

Only two stocks show an increasing trend in mean length and mean weight in the most
recent, 3 to 5 years: witch flounder (Partll. Fig. 2.1.G1) and adult silver hake(Partll.
Fig.2.1.Y1).

The remaining 12 stocks show a recent decline in mean length and mean weight at age
either within the last 3-5 years or for more than a decade in some cases, such as GB cod
(Part 1. Fig. 2.1.A1), GB haddock (Part 1I. Fig. 2.1.B1), white hake (Part Il. Fig. 2.1.L1),
Pollock (Part 1. Fig. 2.1.M1), redfish (Partll. Fig. 2.1.N1), GM haddock (Part Il. Fig.
2.1.R1), butterfish (Part 1. Fig. 2.1.U1). One of the strongest declines was in the mean
weight at age of American plaice (Part Il. Fig. 2.1.H1).

The Visual Reports are a qualitative means of detecting year and year-class effects as
well as potential density dependent effects on growth. All stocks exhibit year effects and
these appear more pronounced for the flatfish stocks than for the gadids. Year class
effects are more easily detected in the density plots rather than in mean length and
weight, e.g. the 1963 haddock year class (Part Il. Fig. 2.1.B2) and the 1971 GM cod year
class (Part I1. Fig. 2.1. F2).

Results suggest that some species may have ‘density dependent’” growth with faster
growth during periods of low density and slower growth during periods of high density.
In particular, Georges Bank haddock (Part 11.Fig. 2.1.B3) show slow growth during the
mid-1960s and early 2000s when stock density was relatively high. Witch flounder (Part
I1.Fig. 2.1.G3b-3c) and American plaice (Part Il. Fig. 2.1.H3) show potential density
dependent growth patterns during 1992-2005, however, the evidence is weaker for male
American plaice than for female American plaice.

Female and male GB yellowtail flounder (Part 11. Fig.2.1.C3b-c) show a reverse non-
density dependent growth pattern during 1992-2005 with high values of mean length and



mean weight when abundance is also high. GM winter flounder (Part 11. Fig.2.1.13b-c)
shows a similar pattern, but not as strongly as the GB yellowtail flounder.

Mackerel (Part Il. Fig.2.1. X3) exhibits density dependent growth at low density,
however, during periods of high density mean weight is low, while mean length remains
relatively constant. This suggests that competition or otherwise limited resources are
affecting condition in mackerel and possibly silver hake.

Quintile plots of mean length ,weight and number at age were rearranged into different
groupings as a way to detect similar patterns of response. Two ages were selected from
each species that represented a juvenile, usually age 2, and an adult, usually an age
greater than 5. Stocks were grouped by juveniles and adults by area (Fig. 2.1.3a-3c) and
by species groups (Fig. 2.1.3d-f). Each stock was then grouped with the juvenile and
adult quintiles adjacent to each other by area (Fig.2.1.3g-i).

Environmental time series are presented in Figures 2.1.4-2.1.9 and Fig. 2.1.15. The NAO
anomalies (Fig. 2.1.4) and the North Wall of the Gulf Stream both show an increasing
trend to positive anomalies from the mid-1960s to the mid-1990s. SST series show an
increasing trend in the temperature difference of summer-winter (Fig. 2.1.5). Annual
primary productivity (Fig. 2.1.9) shows a decline from 2000-2004, and then an increase
in 2004-06.

Abundance anomalies of GB zooplankton (Fig. 2.1.10-12, and Fig. 2.1.16) show varying
trends across species, however, the total abundance anomalies show a distinct pattern of
negative anomalies prior to 1989 and generally positive values in the following years.

Food habits data ,presented as percent of body weight(Figures 2.1.13-2.1.14 and Fig.
2.1.17 ) do not show any strong trends.

Quantitative analysis

The randomization test and linear regression gave similar results for trend and probability
level in both length and weight at age for all stocks (Fig. 2.1.1-2.1.2 and Table 2.1.2-
2.1.5). In future analyses, however, only randomization tests will be used particularly for
smaller data series, i.e. before and after implementation of closed areas. We will only
present results from the randomization test in this paper.

Of the ten stocks reviewed, eight stocks had generally negative trends in both mean
length and weight for the majority of ages (Table 2.1.2 - 2.1.5). Trends in mean length at
age (Table 2.1.2) were significantly declining for the majority of ages for these stocks,
with the exception of GM cod. Only the trend in age 0 mean length was significant,
however, this age is not consistently well sampled in the survey, and is not applied in the
GM cod assessment. Trends in mean weight at age (Table 2.1.4) were also significantly
declining for the majority of ages for these stocks, with the exception of GM cod and GB



haddock. Only one age had significant declining trends in mean weight for each of these
stocks: age 0 GM cod, and age 4 GB haddock.

Silver hake had significantly decreasing trends in mean length and weight at age 1 and 2
and significantly increasing trends in mean length and weight at age 4 and age 5.
Mackerel did not have any significant trends in mean length at age, but all ages were
significantly declining for mean weight at age (Table 2.1.4).

GM winter flounder showed a non-significant increasing trend in mean length at age
(Table 2.1.2 ) for most ages, however, the non-significant trends in mean weight at age
(Table 2.1.4 ) were generally positive for younger ages and negative for the older ages.
Yellowtail flounder was the only stock that had significantly increasing trends in mean
length for the majority of ages. Yellowtail flounder also showed increasing trends in
mean weight at age, but the trend was only significant for age 2 and age 3.

Two interesting patterns are apparent in these results for both mean length and mean
weight at age. Trends in age 1 were not significant for any of the groundfish stocks (only
silver hake), and most stocks showed the majority of ages over age 4 or 5 as having
significant trends, with the exception of GM cod and winter flounder. For most of these
stocks the age of full recruitment to the fishery is at or near age 4.

Exact binomial tests were significant (P=0.1) for estimated slopes of mean length at age
for American plaice females and witch flounder males, and for estimated slopes of mean
weight at age for GB cod, GB haddock, and females and males for both American plaice
and witch flounder. These results indicate that all ages within a stock have the same
trend in growth and that the similarity in trend among ages is not due to chance. Future
analyses will address what mechanisms might generate declining trends in growth for all
age groups within a particular stock.

Summary

Mean length, mean weight and maturity are biological parameters that integrate the
lifetime effects of the environment experienced by an individual fish. As such,
variations in these parameters are coarse measures of environmental change. While it is
not possible to isolate the causal mechanisms and dangerous to posit facile explanations,
the data herein provide compelling evidence of broad-scale changes in the bioenergetics
of several fish species. The quintile plots allow for qualitative comparison of trends
growth within and among species and for comparisons to environmental trends. On
Georges Bank, positive recruit per spawner anomalies for cod, haddock and yellowtail
flounder have been shown to be associated with positive anomalies of NAO (Brodziak
and O’Brien 2005). In the North Sea, the abundance of copepods is associated with the
NAO, and the North Wall of Gulf Stream (http://www.ecn.ac.uk/iccuk//indicators/32.htm).
Similar analyzes will be conducted to determine if any significant trends can be detected
between growth and environmental factors presented here. It must be emphasized that
intensive investigations of relationships between some life stage of fish and an
environmental factor are necessary but not sufficient to explain relationships at other life
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stages. Factors affecting growth of larval haddock may not be associated with abundance
of age 1 fish. Close monitoring of growth rates, particularly among stocks and regions,
provides an important tool for monitoring stock productivity and a wealth of testable
hypotheses for quantifying environmental change.
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Table 2.1.1. Stocks reviewed for trends in mean length, mean weight, abundance and maturity at age.
(GARM=Groundfish Assesment Review Committee, SARC=Stock Assessment Review Committee, TRAC=Transboundary
Resources Assessment Committee, GB=Georges Bank, GM= Gulf of Maine, SNE = Southern New England, MA= Mid-Atlantic.

Review Assessment GARM  Stock Years Season

Panel Model Letter Length, Weight, Abundance Maturity
GARM VPA A GB Cod 1970-2007 Autumn Spring
GARM VPA F GM Cod 1970-2007 Autumn Spring
GARM VPA B GB Haddock 1963-2005 Autumn Spring
GARM R GM Haddock 1963-2007 Autumn Spring
GARM/TRAC VPA C GB Yellowtall 1963-2007 Autumn Spring
GARM VPA D SNE Yellowtail FId.  1970-2007 Autumn Spring
GARM VPA E GM-CC Yellowtail 1977-2007 Autumn Spring
GARM VPA G Witch flounder 1982-2007 Autumn Spring
GARM VPA H American plaice 1980-2007 Autumn Spring
GARM VPA I GM Winter fld 1976-2007 Autumn Spring
GARM VPA J SNE-MA Winter fld ~ 1992-2006 Autumn Spring
GARM VPA K GB Winter fld 1982-2006 Autumn Spring
GARM Forward Proj. L GB-GM White hake  1982-2002 Autumn Spring
GARM INDEX M GB-GM Pollock 1970-2005 Autumn Autumn
GARM INDEX N GB-GM Redfish 1975-2006 Autumn Spring
SARC VPA Fluke 1976-2007 Autumn Autumn
TRAC Forward Proj. Herring 1968-2005 Autumn Autumn
SARC Forward Proj. Mackerel 1973-2005 Autumn Spring
SARC INDEX NGB Silver hake 1973-2004 Autumn Spring
SARC Forward Proj. Butterfish 1982-2003 Autumn Spring



Table 2.1.2 Probability values of randomization tests for linear trend in mean length at age for stocks from Georges Bank (GB),
Gulf of Maine (GM),and Southern New England (SNE). Sexes are combined, unless noted otherwise.
Shaded cells indicate a negative slope, no shading indicate positive slope. Significant values in bold (P < =0.1).

AGES
0 1 2 3 4 5 6 7 8 9 10
GB Cod 0.8440 0.3140 0.1200 0.1400 | 0.0700 | 0.0120 | 0.0020 | 0.0580 | 0.3280 - -
Haddock 0.5260 0.9280 0.2740 0.1380 | 0.0080 | 0.0100 | 0.0740 | 0.0280 - - -
Yellowtail -female - 0.8320 | 0.0220 | 0.0060 | 0.0860 | 0.0120 | 0.5140 - - - -
Yellowtail-male - 0.4260 | 0.0080 | 0.0040 | 0.0300 - - - - - -
Silver Hake (Northern) 0.9100 | 0.0540 | 0.0080 | 0.7440 | 0.0020 | 0.0000 - - - - -
GM Cod 0.0140 | 0.7960 = 0.8880 0.9980 0.7400 0.2320 = 0.3980 0.7880 - - -
Winter flounder -female - 0.4580 0.4360 0.1000 | 0.0840 | 0.8640 = 0.4380 0.4940 - - -
Winter flounder-male - 0.9720 | 0.0140 | 0.0820 | 0.5180 = 0.3100 0.3080 - - - -

American * - 0.2860 | 0.0460 | 0.0240 | 0.0040 | 0.0020 | 0.0000 | 0.0040 | 0.0040 | 0.0260 | 0.0660
American plaice-male - 0.9040 | 0.0300 | 0.0020 | 0.0120 | 0.0040 | 0.0280 | 0.2980 - - -

Witch flounder-female - 0.4100 0.3260 0.7220 0.1960 | 0.0020 | 0.0000 | 0.0000 | 0.0420 | 0.0980 | 0.1580
Witch flou* - 0.5240 0.3640 0.3260 | 0.0940 | 0.0000 | 0.0000 | 0.0560 | 0.0780 | 0.2860 -
SNE Fluke-female - 0.1600  0.6280 | 0.0100 | 0.0000 | 0.0000 | 0.0080 - - - -
Fluke-male - 0.2180 0.4960 | 0.0880 | 0.0000 | 0.0620 - - - - -
Mackerel - 0.1480 | 0.6500 0.1440 0.8660 0.5760 0.3480 - - - -

* Binomial Exact Test - Significant at P <= 0.10



Table 2.1.3 Slope of mean length-at-age over time for stocks from Georges Bank (GB), Gulf of Maine (GM),
and Southern New England (SNE). Sexes are combined, unless noted otherwise.

AGES
0 1 2 3 4 5 6 7 8 9 10
GB Cod -0.0032 -0.0157 -0.0249 -0.0238 -0.0289 -0.0397 -0.0548 -0.0380 -0.0237 - -
Haddock 0.0081 0.0009 -0.0141 -0.0190 -0.0334 -0.0306 -0.0226 -0.0301 - - -
Yellowtail -female - -0.0180 0.1482 0.1668 0.1120 0.1625 0.0575 - - - -
Yellowtail-male - 0.0533 0.1636 0.1743 0.1458 - - - - - -
Silver Hake (Northern) 0.0034 -0.0351 -0.0502 -0.0075 0.0617 0.0813 - - - - -
GM Cod 0.0436 0.0045 -0.0008 -0.0001 -0.0064 0.0204 -0.0152 0.0054 - - -
Winter flounder -female - -0.0581 0.0607 0.1129 0.1291 0.0177 -0.0765 0.0862 - - -
Winter flounder-male - 0.0034 0.1571 0.1187 0.0503 -0.0769 -0.1255 - - - -
American plaice-female - 0.0802 -0.1528 -0.1581 -0.1916 -0.2012 -0.1978 -0.1969 -0.1674 -0.1918 -0.1776
American plaice-male - 0.0095 -0.1601 -0.1984 -0.1847 -0.1831 -0.1514 -0.1043 - - -
Witch flounder-female - -0.0817 0.0838 0.0310 -0.0984 -0.2056 -0.2384 -0.2372 -0.1846 -0.1831 -0.1470
Witch flounder-male - -0.0609 -0.0723 -0.0812 -0.1268 -0.2156 -0.1849 -0.1625 -0.2104 -0.1445 -
SNE  Fluke-female - 0.0976 -0.0384 -0.1497 -0.1867 -0.2232 -0.1992 - - - -
Fluke-male - 0.0832 0.0406 -0.1070 -0.1786 -0.1616 - - - - -
Mackerel - 0.0280 -0.0082 -0.0284 -0.0035 0.0103 0.0177 - - - -

10



Table 2.1.4 Probability values of randomization tests for linear trend in mean weight at age for stocks from Georges Bank (GB),

Gulf of Maine (GM),and Southern New England (SNE). Sexes are combined, unless noted otherwise.
Shaded cells indicate a negative slope, no shading indicate positive slope. Significant values in bold (P <= 0.1).

AGES
0 1 2 3 4 5 6 7 8 9 10
GB Cod * 0.2900  0.2240 | 0.0200 | 0.0400 | 0.0300 | 0.0060 | 0.0000 | 0.0140 | 0.2200 - -
Haddock * 0.3980 0.7860 0.2360 0.1180 | 0.0180 | 0.1420 0.3940 | 0.0360 - - -
Yellowtail -female - 0.7060 | 0.0420 | 0.0480 | 0.3360 0.1860 0.8100 - - - -
Yellowtail-male - 0.5320 | 0.0260 | 0.0320 | 0.1300 - - - - - -
Silver Hake (Northern) 0.7460 | 0.0180 | 0.0020 | 0.4300 | 0.0000 | 0.0000 | - - - - -
GM Cod 0.0760 = 0.5240 0.6120 0.9820 0.8980 0.1740 = 0.7940 0.4700 - - -
Winter flounder -female - 0.2380 0.8540 0.3340 0.2960 | 0.7100 0.1920 0.6620 - - -
Winter flounder-male - 0.7960 0.1080 0.4420 0.8180 0.2180 0.2260 - - - -
American * - 0.9220 | 0.0180 | 0.0180 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0180 | 0.0120 | 0.0780 |
American * - 0.4500 | 0.0120 | 0.0000 | 0.0040 | 0.0000 | 0.0140 | 0.2340 - - -
Witch flou* - 0.2020 0.1920 0.8320 0.1280 | 0.0020 | 0.0000 | 0.0000 | 0.0180 | 0.1000  0.1420
Witch flou* - 0.1440 0.1720 0.1100 | 0.0460 | 0.0000 | 0.0060 | 0.0400 | 0.0640 | 0.3000 -
SNE Fluke-female - 0.1340  0.7660 | 0.0180 | 0.0020 | 0.0020 | 0.0080 | - - - -
Fluke-male - 0.1960 0.3520 | 0.1280 | 0.0020 | 0.1960 - - - - -

Mackerel

[0.0000 T 0.0260 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - -

* Binomial Exact Test - Significant at P < =0.10
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Table 2.1.5 Slopes of mean weight-at-age over time for stocks from Georges Bank (GB), Gulf of Maine (GM),
and Southern New England (SNE). Sexes are combined, unless noted otherwise.

AGES
0 1 2 3 4 5 6 7 8 9 10
GB Cod -0.0172 -0.0206 -0.0339 -0.0317 -0.0346 -0.0425 -0.0649 -0.0457 -0.0309 - -
Haddock 0.0110 -0.0048 -0.0179 -0.0228 -0.0443 -0.0240 -0.0174 -0.0366 - - -
Yellowtail -female - -0.0280 0.1215 0.1197 0.0659 0.0945 0.0221 - - - -
Yellowtail-male - 0.0434 0.1356 0.1368 0.1080 - - - - - -
Silver Hake (Northern) -0.0073 -0.0473 -0.0559 -0.0144 0.0610 0.0815 - - - - -
GM Cod 0.0328 -0.0106 -0.0095 -0.0008 -0.0029 0.0222 -0.0043 0.0157 - - -
Winter flounder -female - -0.0908 0.0094 0.0727 0.0832 -0.0354 -0.1081 0.0510 - - -
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Figure 2.1.1. Probability values of randomization tests and linear regression at age for mean length at age

for 10 stocks, with P <= 0.1.
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Figure 2.1.3a Quintiles of stratified mean length with dispersion estimates for selected groundfish grouped as juveniles and adults by
area (GOM=Gulf of Maine, GB=Georges Bank, SNE = Southern New England.
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Figure 2.1.3b. Quintiles of stratified mean weight with dispersion estimates for selected groundfish grouped as juveniles and adults
by area (GOM=Gulf of Maine, GB=Georges Bank, SNE = Southern New England).
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Figure 2.1.3c. Quintiles of stratified mean number with dispersion estimates for selected groundfish grouped as juveniles and adults
by area (GOM=Gulf of Maine, GB=Georges Bank, SNE = Southern New England).
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Figure 2.1.3d. Quintiles of stratified mean length with dispersion estimates for selected groundfish grouped as juveniles and adults by
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Figure 2.1.3e. Quintiles of stratified mean weight with dispersion estimates for selected groundfish grouped as juveniles and adults by
species groups.
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Figure 2.1.3f. Quintiles of stratified mean number with dispersion estimates for selected groundfish grouped as juveniles and adults

by species groups.
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Figure 2.1.4 North Atlantic Osciallation (NAO) , 3-year moving average from 1960-2006.
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Figure 2.1.5. North Wall Gulf Stream, winter and spring from 1966-2007.
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Figure 2.1.5. Summer-Winter temperatures for Gulf of Maine (GOM), Southern Georges Bank (So. GB),
and Southern New England (SNE) from 1960-2006.
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Figure 2.1.6 March temperatures for Gulf of Maine (GOM), Southern Georges Bank (So. GB),
and Southern New England (SNE) from 1960-2006.
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Figure 2.1.7. April-June SST satellites for Gulf of Maine (GOM), Southern Georges Bank (So. GB),
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and Southern New England (SNE) from 1985-2007.
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Figure 2.1.8 Average chlorophyll a (mg/m**3) for Gulf of Maine (GOM), Southern Georges Bank (So. GB),

and Southern New England (SNE) from 1985-2007.
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Figure 2.1.9 Annual primary productivity (mg C/m**2 /day for Gulf of Maine (GOM), Georges Bank (GB),
Southern New England (SNE), Mid-Atlantic Bight (MAB), and Northeast Shelf (NES) during 1998-2006.
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Figure 2.1.10. Annual abundance anomalies of common zooplankton taxa on Georges Bank from 1977-2004.
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Figure 2.1.11. Annual abundance anomalies of common zooplankton taxa on Georges Bank from 1977-2004.
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Figure 2.1.12 . Total zooplankton abundance anomalies on Georges Bank from 1977-2004.
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Figure 2.1.13 . Percent body weight of pollock, red hake, silver hake, summer flounder, white hake, Georges Bank
winter flounder, and Cape Cod-Gulf of Maine yellowtail flounder, during the spring from 1992-2007.
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Figure 2.1.14. Percent body weight of pollock, red hake, silver hake, summer flounder, white hake, Georges Bank
winter flounder, and Cape Cod-Gulf of Maine yellowtail flounder, during the fall from 1992-2007.
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Figure 2.1.15 . Quintiles of environmental data including NAO, North wall of Gulf Stream, Sea surface temperatures, chlorophyll a,
primary productivity, during 1960-2007.
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Figure 2.1.16 Quintiles of Georges Bank zooplankton anomalies, 1977-2004.
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Figure 2.1.17 . Quintiles of percent body weight of six groundfish species from NEFSC spring
and autumn research surveys, 1992-2007.
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